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A B S T R A C T   

Inadequate sampling can cause biased estimates of species diversity, as species occurrence generally follows a 
log-normal distribution with a long tail. Understanding this sampling bias is fundamental to inform biodiversity 
conservation actions. However, currently available tests to assess data quality, such as fitting species abundance 
distribution (SAD) models and rarefaction curves are computationally costly and can still lead to erroneous 
conclusions. 

We evaluated Benford's law (first digit distribution) as a complementary method to assess data heterogeneity 
and survey coverage in large biodiversity datasets, including eBird data for 157 countries and three non-avian 
GBIF datasets. We also tested conformity to Benford's law of four simulated communities with different SAD 
models and four corrupted datasets with log-normal SAD. Finally, we evaluated the effect of including rare 
species in three datasets on the conformity to Benford's law and also compared Benford fit to the results of 
traditional methods to estimate survey completeness in seven datasets. 

Species-rich datasets with a large number of observations tended to obtain a good fit. Benford conformity can 
be a simple and sensitive measure of sampling evenness, complementing traditional methods to assess quality 
data in large-scale studies. Benford's test can reflect species abundance heterogeneity, especially in log-normally 
distributed data, but was not ideal to evaluate surveys completeness, as its results diverged from those of 
traditional methods. 

As the contribution of citizen science continues to increase in biodiversity monitoring, this fast and efficient 
method can play a critical role to assess the quality of datasets.   

1. Introduction 

With the continued decrease of biodiversity in space and time 
(Ceballos et al., 2017), tracking our global progress in curbing biodi
versity loss is critical (Harrison et al., 2014; Magurran et al., 2010). 
However, the current funding for long-term ecological and conservation 
research is inadequate to monitor biodiversity at relevant scales (Bakker 
et al., 2010). The availability of data necessary to understand biodi
versity status and trends has been recognised in the proposed Target 21 
of the Kunming-Montreal Global Biodiversity Framework of the 
Convention on Biological Diversity (CBD, 2022). Nevertheless, citizen- 
science initiatives are a growing source of data used by research scien
tists, conservationists, and government agencies (Cooper et al., 2014; 

Theobald et al., 2015; Sullivan et al., 2017; Pocock et al., 2018; Chandler 
et al., 2017). With increasing taxonomic, geographic, and temporal 
coverage, citizen-collected data play a larger-than-ever role in informing 
biodiversity monitoring. 

While the production and uptake of citizen science have been 
outstanding, particularly in countries with high gross domestic product 
(Meyer et al., 2015; Callaghan et al., 2021), other countries still need to 
increase data collection. With calls for international biodiversity moni
toring and the generation of Essential Biodiversity Variables (Pereira 
et al., 2013; Jetz et al., 2019), nations are becoming more responsible for 
data collection and collation (Navarro et al., 2017). Nevertheless, 
quantifiable metrics need to be developed that can track the progress of 
a country towards closing biodiversity data gaps (Oliver et al., 2021). 
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In spite of the increasing potential of citizen science data, concerns 
still remain surrounding data quality (Burgess et al., 2017). Indeed, in 
order to use citizen science data for research, conservation, and policy, 
we need to know when the data are ‘reliable’. Data quality issues can 
originate from spatial, temporal, taxonomical and other biases (Szabo 
et al., 2012; Ward, 2014; Troudet et al., 2017), are inherent to the 
sampling methods used (Cox et al., 2017) and can result from incom
plete sampling (Hortal et al., 2008; Beck and Schwanghart, 2010). In 
this work, we focus on the unevenness of the data (i.e., the heterogeneity 
of species' abundance), which can also result from incomplete coverage 
or biased sampling. 

Finding adequate methods to estimate sample representativeness 
(including completeness) in species diversity studies is a major concern 
in ecology and consequently in conservation biology. Inaccurate mea
sures of species richness and abundance originating from low detect
ability can lead to erroneous conclusions in biogeographical or 
macroecological research, impair the delimitation of priority areas for 
species protection and jeopardize other decision-making processes 
(Chao and Jost, 2012; Gotelli and Colwell, 2011; Roswell et al., 2021). 
Traditional statistical tools to check data quality are based on species 
accumulation curves, rarefaction curves, diversity estimation processes 
(including Hill numbers) and fit tests for species abundance distribution 
(SAD) models (Magurran, 2004; Lobo, 2008; Lobo et al., 2018; Chao 
et al., 2020). While these methods are widely accepted and provide 
confidence intervals and other parameters for the diversity estimate, 
they cannot always indicate whether the dataset is unbiased (Colwell 
and Coddington, 1994), as they often over-, or underestimate species 
richness (Melo et al., 2003). Furthermore, different diversity indices 
have been found to be sensitive to the sampling method used (Cox et al., 
2017). Nevertheless, species richness and abundance patterns are also 
affected by sampling effort, as many species are naturally rare (Roswell 
et al., 2021; Magurran and Henderson, 2003), even at multiple spatial 
scales (Chiarucci et al., 2009; Warren et al., 2011). As an example, the 
Hill numbers paradigm (Hill, 1995; Chao et al., 2014) is a unified theory 
to approximate biodiversity, while accounting for abundance distribu
tion (i.e., the relative abundance of species observed) to varying degrees 
based on the exponent q. Hill numbers have been widely used, as they 
help to overcome some of the shortcomings of biodiversity sampling 
(Chao et al., 2014). Nevertheless, their use requires homogeneous 
samples and therefore it is not recommended for unstructured datasets, 
such as citizen science data and museum collections. 

The classic left-skewed pattern of species abundance distribution has 
also been used to check the reliability of datasets, as communities are 
usually composed of a few dominant and many rare species (Verberk 
et al., 2010; McGill et al., 2007a, 2007b). The classic rank-abundance 
analysis was originally used to evaluate empirical data to understand 
possible mechanisms of species structuring in natural communities 
(Magurran, 2004). This pattern is seen across various communities and 
is often explained by the fact that different species have different abil
ities to access limited resources, and their resource use is reflected in 
their abundance (Magurran, 2004). However, random datasets seem to 
generate similar results to what would be expected in communities 
structured by a niche competition process (Warren et al., 2011). In any 
case, the logarithmic curve shaped by the frequency distribution of 
species abundance apparently follows a power natural law in biodiver
sity datasets (Marquet et al., 2007). Along with log-normal, other SAD 
models have also been criticised for inaccurately representing rare 
species – as biodiversity researchers know, the “tail of rare species” is 
often longer than predicted by classical models. 

Interestingly, the shape of the logarithmic curve of rank-abundance 
graphs of communities is the same as the theoretical distribution of 
digits predicted by Benford's law. Benford's law states that the leftmost 
non-zero digit of any given series of numbers or a set of numbers 
measuring any given phenomenon, is not uniformly distributed, as most 
numbers start with the digit 1, followed by 2 and then 3 (Newcomb, 
1881; Benford, 1938). Thousands of datasets have been found to 

conform to Benford's law (http://www.benfordonline.net/). This 
method is commonly used to check reliability of numeric data in many 
fields, to test specific frequency distribution patterns within a dataset, 
and to compare them to those expected by a specific first-digit distri
bution described by Benford's law. It is frequently used to check for data 
tampering, including detecting fraud in accounting (Nigrini, 2012), 
political election processes (Klimek et al., 2018), disease reporting 
(Sambridge and Jackson, 2020) and in academia (Horton et al., 2020). 

Additionally, Benford's law has been used in natural resource man
agement to check the credibility of reported harvest numbers, including 
fish or trophy hunting (Cerri, 2018), and illegal deforestation (Perazzoni 
et al., 2020). Besides being used to detect cases of data tampering, 
natural biological datasets have also been found to conform to Benford's 
law. The number of cells in cyanobacterium colonies (Costas et al., 
2008), pollen counts (Docampo et al., 2009), genome size (Friar et al., 
2012) and the number of angiosperm taxa (Campos et al., 2016) all obey 
Benford's law to some extent. Broadly, Benford's law and other digit- 
based tests have been suggested as a simple initial screening step for 
large and complex ecological datasets (Docampo et al., 2009; 
Özkundakci and Pingram, 2019). This is particularly important, given 
that ecological datasets, boosted by the recent increase in citizen-science 
data, continue to grow in size and complexity (Michener, 2006). 

Here we use Benford's law to evaluate data quality based on sampling 
heterogeneity (abundance heterogeneity among species) in large 
biodiversity datasets of different spatio-temporal scales, some of them 
contributed by citizen scientists. We also tested conformity to Benford's 
law as a measure of survey coverage, i.e., how completely the commu
nity has been sampled. We assumed that the results of Benford's test 
would be similar to traditional methods with regard to data quality in 
community ecology, because the digit distribution model predicted by 
Benford's law has a similar left-skewed shape (log-normal model) as the 
patterns seen in species abundance in communities. Finally, we discuss 
the implications of using this method to evaluate large-scale biodiversity 
datasets. 

2. Methods 

2.1. Testing the conformity to Benford's law on bird data 

Mean Absolute Deviation (MAD) measures conformity to Benford's 
law, without considering the number of records. It is defined as the mean 
of the absolute value of the difference between the frequency of each 
first digit within the sample, and the frequency as determined by Ben
ford's law. The higher the MAD, the larger the average difference be
tween the actual and expected proportions, with a value above 0.015 
categorised as non-conformity (Nigrini, 2012). Mantissa Arc test is 
another test of the probability of the data fitting Benford's distribution. 
The null hypothesis is that the data is uniformly distributed, and the 
degrees of freedom is 2 (Nigrini, 2012). We carried out goodness-of-fit 
testing and calculated MAD using the ‘benford.analysis’ package (Cin
elli, 2014) in the R environment using version 4.0.3 (R Core Develop
ment Team, 2020). 

We explored the conformity to Benford's law on different spatial and 
temporal subsets of bird data. First, we downloaded the eBird basic 
global dataset including observations for 2000–2020 (ebd_version_
May2020). With over 900 million bird observations, eBird is one of the 
most successful global citizen science projects (Sullivan et al., 2014). 
Compared to other taxa, bird atlases and other semi-structured and 
unstructured bird datasets are known to be relatively complete and of 
good quality at regional (Szabo et al., 2012; Troudet et al., 2017), na
tional (Troia and McManamay, 2016) and global scales (Oliver et al., 
2021; La Sorte and Somveille, 2019). Besides testing the full dataset 
comparing different countries, we also used the subset for the United 
States to compare Benford fit of regions at a subnational level and 
yearly. These datasets allowed us to compare the results among datasets 
with variable species richness that were collected within different 
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geographical limits and with variable sampling efforts. For each dataset, 
we removed species with fewer than 100 observations, since the stan
dard procedure of fitting Benford's law recommends the using numbers 
with at least three digits (Nigrini, 2012). While complex socio-political 
factors are known to influence sampling at the global level (Leong 
et al., 2018; Zizka et al., 2021), we assumed similar random biases at the 
country level, resulting in low directional bias with regard to methods 
and other sampling biases among countries. Next, we selected eBird data 
from the United States of America, the country with the highest number 
of observations in the eBird dataset, to check if the patterns were similar 
at a finer, non-geopolitical spatial scale by aggregating observations 
based on North American Bird Conservation Regions (Pavlacky et al., 
2017). We used the same dataset to subsample data temporally, to test 
the effect of cumulative effort (and therefore increasing sample size) on 
Benford conformity. For these tests, we filtered data to the best quality 
lists, including only complete checklists from surveys with 5–240 min in 
duration and under 5 km of distance travelled. In summary, we collated 
the number of observations per bird species 1) for each country, 2) each 
Bird Conservation Region and 3) yearly for the USA. To evaluate the 
effect of small sample sizes, we also checked a very small community the 
Birds of Joshua Tree National Park from iNaturalist dataset with 564 
observations of 103 bird species https://www.inaturalist.org/observ 
ations?project_id=4786. 

While Aves are known to be oversampled in GBIF with relatively 
high completeness, Amphibia and Plantae have lower coverage, but are 
still relatively well sampled and Arachnida are under-represented 
(Troudet et al., 2017). Therefore, we selected additional case studies 
from these groups (i.e., anurans, plants, and spiders), using regional 
datasets that we assumed to have lower species diversity and 
completeness than birds. Besides citizen-collected data, these datasets 
also include species occurrence data originating from other sources, 
such as museum collections and observations from scientific expeditions 
(https://www.gbif.org/what-is-gbif). Therefore, we downloaded three 
relatively large datasets from GBIF on 2 November 2021: (1) The plants 
of the Parisian Basin (Flore du Bassin Parisien; thereafter ‘plants’; https 
://doi.org/10.15468/dl.2da96q) with 7.9 million observations and 
5275 species, (2) the anurans of the Southern Hemisphere (frogs; https 
://doi.org/10.15468/dl.g48yd6) with 1.1 million observations and 
3281 species, and (3) the spiders of the Southern Hemisphere (spiders; 
https://doi.org/10.15468/dl.6wfshp) with 516,089 observations and 
9902 species. The frog and spider datasets were downloaded from the 
general database using GBIF filters (https://www.gbif.org/occurren 
ce/search). 

2.2. Comparing the conformity to Benford's law for datasets with different 
species abundance distribution 

In order to assess conformity to Benford's law as a measure of sam
pling heterogeneity (uneven sampling of the abundance of different 
species in the dataset), we compared the fit to Benford's law among 
simulated communities based on four species abundance distribution 
models: log-normal, log-series, Poisson log-normal and MacArthur's 
broken stick for Simulations 1 to 4, respectively. We simulated these 
communities using the same number of individuals (n = 7,839,439), and 
a bit over 2000 species using the sim_sad function of the ‘mobsim’ 
package (May et al., 2018). We also created four biased communities 
based on the Costa Rica eBird dataset, manipulating the abundance of 
species in different ways. We separated species into categories of 
abundance and treated very common, common and rare species differ
ently creating somewhat realistic scenarios (Szabo et al., 2012; Tulloch 
and Szabo, 2012). For the Biased 1 dataset, we decreased the number of 
observations for the 20 most common species to half (i.e., observers 
ignoring common species, for instance in the case of introduced species), 
increased the number of observations 50 times for the 50 least common 
species (i.e., observers preferentially recording rare species), and for the 
rest of the community, we randomly added or subtracted 1–20 % from 

the number of observations (to represent detection errors or mis
identifications, including both false negatives and false positives). For 
Biased 2, we doubled the number of observations for the 20 most 
common species (i.e., observers preferentially recording common spe
cies compared to their real abundance), increased the number of ob
servations 10 times for the 50 least common species (i.e., observers 
having some preference for rare species), and for the rest of the com
munity, we randomly added or subtracted 1–30 % from the number of 
observations, to represent a somewhat higher rate of error. For Biased 3, 
we doubled the number of observations for the 20 most common species, 
eliminated the 50 least common species (i.e., the birds having extremely 
low detection rates or the observer lacking the knowledge to identify 
and therefore missing the species), and for the rest of the community, we 
randomly added or subtracted 1–30 % from the number of observations, 
and for Biased 4, we decreased the number of observations by half for 
the 20 most common species, eliminated the 50 rarest species and added 
or subtracted 1–30 % for in-between species. 

2.3. The effect of including rare species 

For all general calculations in this study, we removed species with 
fewer than 100 observations for each unit following the standard pro
cedure of fitting Benford's law (Nigrini, 2012). However, rare species, 
such as habitat specialists, are important in real communities and 
together make up a large percentage of individuals (Verberk et al., 
2010). We tested the effect of removing rare and extremely rare species 
on Benford fit using eBird datasets from the three representative coun
tries (Costa Rica, Brazil and Thailand) with different Benford confor
mities. We tested Benford conformity and fit to unimodal gambin 
distribution including a) only rare (11–99 observations) and b) rare as 
well as very rare (1–9 observations) species in the subset. The gambin 
model is considered suitable for species abundance distributions and 
performs better than preferred models for real communities with rare 
species (Ugland et al., 2007). We used the “fit_abundance” function in 
the “gambin” package to estimate statistical parameters and to test the 
fit using the maximum likelihood method (Matthews et al., 2014). The 
test estimates α, a parameter that summarises the shape of the species 
abundance distribution in a single number. High α values describe a 
community with many abundant species and lower values indicate the 
presence of many rare species (Ugland et al., 2007). 

2.4. Assessing conformity to Benford's law as a measure of coverage 

Besides testing the applicability of Benford's Law as a measure of 
sampling heterogeneity in large biodiversity datasets, we performed a 
series of tests of its applicability for assessing biodiversity survey 
completeness. We first tested the sensitivity of MAD to the number of 
species and the number of eBird observations in each country, relating 
these two factors. Next, given the strong correlation between these 
variables (r = 0.89, p < 0.01, n = 157), we tested the effect of the 
number of observations on the natural log-transformed MAD, fitting a 
linear regression model using the “lm” function in R. To benchmark 
Benford conformity, we used an assessment of eBird survey complete
ness (La Sorte and Somveille, 2019). This approach estimates survey 
completeness by modelling the relationship between the number of 
species and sampling effort to develop a species accumulation curve 
describing the relationship between the accumulated number of species 
and survey effort (for full details see Lobo et al., 2018; La Sorte and 
Somveille, 2019). We used the equal-area hexagonal cells (49,811 km2) 
from La Sorte and Somveille (2019) and averaged the values to derive an 
average completeness score based on cells belonging to each country 
and across months. We rounded these values to the nearest integer be
tween 0 and 100 to achieve survey completeness for each country. We 
then fit a linear model to test for the relationship between MAD and 
survey completeness, where MAD was the log-transformed response 
variable and completeness was the predictor variable. 
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To relate bird survey coverage to sampling heterogeneity where 
sampling occurred for all terrestrial vertebrates, we used a linear 
regression between MAD scores of national eBird datasets and country- 
level Species Sampling Effectiveness Index values (Oliver et al., 2021). 
In this test we included 131 countries, with values in both datasets. 

Based on the MAD scores, we selected a country eBird dataset from 
each of the close conformity, marginally acceptable conformity and non- 
conformity categories. For Costa Rica, which had high avian species 
diversity and high number of observations and was the only country 
with close conformity, we selected random subsets of 20, 40, 60 and 80 
% of the total number of observations and calculated the Benford fit for 
these subsets along with chi-squared difference and summation differ
ence. For these subsets and for Brazil and Thailand, two countries of 
lower completeness, we tested how the conformity to Benford's law 
correlated with the results of traditional measures of survey complete
ness, including rank-abundance graphs and rarefaction curves. We 
constructed rarefaction curves using the ‘vegan’ package and specaccum 
function based on 100 permutations (Oksanen et al., 2020). Similarly, 
we calculated these indices for the plant, frog and spider datasets from 
GBIF. 

3. Results 

3.1. Conformity of avian and non-avian datasets to Benford's law 

Out of 253 countries in the eBird dataset, 157 had over 25 species 
with over 100 observations. Among these, almost two-third of the 
countries (93) did not conform to Benford's law (see Table 1 for selected 
countries, Table S1 for all countries). Generally, the total number of 
observations and the total number of species observed in the same 
country increased conformity (with the number of observations posi
tively related to the total number of species per country; r2 = 0.36, f- 
value = 91.96, p < 0.01, n = 157, Fig. 1). The level of conformity varied 
among countries, those with a higher number of observations in general 
had a better fit to Benford's law based on the first digits (Fig. 2). Results 
were similar for USA Bird Conservation Regions (Fig. S1). The small 
avian dataset from iNaturalist (N1JoshuaTreeNP = 103 and N2JoshuaTreeNP 
= 22) had non-conformity (with MADJoshuaTreeNP = 0.0585), with 
Mantissa mean and variance values of 0.252 ± 0.082. 

The GBIF datasets for spiders (the number of observations used for 
first and second-order tests: N1spiders = 477 and N2spiders = 273) and 
frogs (N1frogs = 789, N2frogs = 492) both had non-conformity (with 
MADspiders = 0.0617 and MADfrogs = 0.0463), with Mantissa mean and 
variance values of 0.323 ± 0.063 and 0.371 ± 0.074, respectively. The 
plant dataset (N1plants = 2071, N2plants = 1498) reached marginally 
acceptable conformity (MADplants = 0.0139), with a mean ± variance 
Mantissa value of 0.456 ± 0.085. The Pearson's χ2 statistics were all 
significant at p < 0.0001 (χ2

spiders = 188.78, χ2
frogs = 160.32 and χ2

plants =

51.289). Similarly, each of the three datasets had a significant (p <
0.0001) Mantissa arc test (L2spiders = 0.1326, L2frogs = 0.0673, L2plants =

0.0067). 

3.2. Benford fit as a measure of sampling heterogeneity of simulated and 
corrupted community datasets 

Among the four simulated communities, we found close conformity 
to Benford's law only for Simulated 1, which used the log-normal model 
for species abundance distribution (Table 2). Simulated 4, the commu
nity created using MacArthur's broken stick model reached marginally 
acceptable conformity. The four biased datasets, which were based on 
log-normally distributed eBird data from Costa Rica, also maintained a 
good fit to Benford even after relatively high levels of data manipulation, 
maintaining close conformity in Biased 1–3 and acceptable conformity 
in Biased 4 (Table 2). 

3.3. Fitting Benford's law and the gambin model to evaluate datasets 
including rare and extremely rare species 

Including rare and extremely rare species increased conformity to 
Benford's law for the eBird datasets for Brazil and Thailand (Table 3). In 
general, AICc values showed better gambin model fit for datasets from 
Brazil, while the Thailand dataset with only >100 observations species 
had the lower AICc value for the gambin model (Table 3). 

3.4. Benford fit to assess coverage in species-rich datasets 

Increased sampling, reflected by cumulatively increasing number of 
observations each year within the USA, steadily decreased MAD, sug
gesting closer conformity to Benford's law through time (Fig. 3a). 
Similarly, countries with high coverage in general had lower MAD scores 
(linear regression of MAD on survey completeness, r2 = 0.23, t-value =
− 6.49, p < 0.001, n = 140, Fig. 3b). 

The country-level correlation between MAD scores for birds and the 
Species Sampling Effectiveness Index for all vertebrates was poor (r2 =

0.0901, n = 131). Some countries with non-conformity to Benford's law 
had low, while others had high Species Sampling Effectiveness Index 
(vales ranging from 0.661 to 1), while the country with close conformity 
had an index of (only) 0.851. 

The variable levels of conformity to Benford's law among the eBird 
datasets from Costa Rica, Brazil and Thailand were reflected in the 
differences in χ2 and summation values (Fig. 4, Table 3), while non- 
Benford measures, including rarefaction, species diversity accumula
tion and sample coverage showed satisfactory completeness (Fig. 5). 
Benford's fit was lowest for Thailand and highest for Costa Rica. 

We found a gradual increase in Benford conformity when randomly 
selecting increasing subsets of 20, 40, 60, and 80 % of the 3,876,668 
observations from the Costa Rica dataset (Fig. 6, Table 4). At 20 %, the 
Benford fit resulted in non-conformity, at 40 % it reached marginally 
acceptable, at 60 % acceptable and at 80 % close conformity. The non- 
conformity of the small avian dataset from iNaturalist also fits this 
pattern. 

The rank-abundance analysis of the plant, frog and spider datasets 
showed the patterns expected when the dataset contains few common 
and many rare species (Fig. 7). However, this distribution of abundance 

Table 1 
Number of countries with different levels of conformity to the Benford Law based the first digit of the number of observations for each bird species in eBird data. Mean 
Absolute Deviation (MAD) values based on Nigrini (2012). Countries in bold are shown in Fig. 1. For details of all countries see Table S1.  

Benford fit MAD Number of 
countries 

Examples Number of observations per species 
(average ± SD) 

Close conformity 0.000–0.006  1 Costa Rica 5048.9 
Acceptable conformity 0.006–0.012  10 Argentina, Australia, Canada, Chile, Honduras, Mexico, Panama, Spain, 

Sweden, United States 
38,455.6 ± 84,335.8 

Marginally acceptable 
conformity 

0.012–0.015  10 Brazil, Cuba, El Salvador, Greece, India, Malaysia, Netherlands, 
Portugal, Puerto Rico, Turkey 

2439.4 ± 3089.1 

Non-conformity Above 0.015  136 Examples: Djibouti, Thailand 477.4 ± 955.6 
Failed   94 Examples: Congo (3994 observations of 351 species), Martinique (7321 

observations of 127 species) 
24.0 ± 33.9  
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was driven by one common species, particularly in the spider dataset. 
Even though in general, this is a diagnostic of well-sampled datasets, 
none of the rarefaction curves reached a satisfactory asymptote, similar 
to the one seen for birds in Costa Rica (Fig. 8). All rarefaction curves 

indicate that more species are likely to be included with new individuals 
sampled. While rank-abundance graphs seem to indicate robustness, 
particularly in the case of frogs and plants, these datasets did not obtain 
a good Benford fit. 

4. Discussion 

Our results suggest that analysing the conformity to Benford's law in 
large-scale community datasets can be a suitable test of data quality 
considering the fit for the best models of species abundance distribu
tions. However, Benford conformity was not a reliable method to assess 
survey completeness in our sample datasets. As we hypothesised, data
sets with good Benford conformity showed log-normal abundance dis
tributions. Including rare species increased conformity in the tested 
datasets, suggesting that this method could be used to check an expected 
log-normal or gambin abundance distributions for real communities, 
which includes a long-tailed curve caused by the presence of rare spe
cies. Therefore, we suggest to use Benford conformity as complementary 
to traditional methods (e.g., rarefaction or Hill numbers) when assessing 
data quality. 

Interestingly, the conformity to Benford's law increased in eBird 
datasets of some megadiverse countries that showed extremely high 
sampling effort and oversampling, such as the USA. Particularly for 
birds, biodiversity sampling effort is much higher in North America and 
Europe than in many developing nations (La Sorte and Somveille, 2019). 
Generally, the former countries also have government or NGO- 
coordinated systematic bird monitoring at the national scale, for 
instance the Breeding Bird Surveys coordinated by the United States 
Geological Survey in the USA and Canada, monitoring by the European 
Bird Census Council in European countries and by the British Trust for 
Ornithology in the United Kingdom. In countries with both formal sur
veys and ample citizen science data, bird population trend estimates 
based on these data sources are similar (Szabo et al., 2011; Horns et al., 
2018). In contrast, many developing countries lack systematic surveys to 

Fig. 1. Mean Absolute Deviation scores for all countries included in analysis (n = 157), as a function of their total bird species richness and the number of ob
servations in eBird data. The six example countries highlighted in Table 1 are labelled. 

Fig. 2. Benford's law-based analysis for selected countries (Costa Rica, United 
States and Brazil top row from left to right and Netherlands, Thailand and 
Djibouti bottom row from left to right). The frequency of first digits of species 
observations in eBird data (coloured bars) compared to Benford's first digits' 
probability (black dots). Conformity is indicated by the colour of the bars; blue: 
close, red: acceptable, green: marginally acceptable and purple: nonconformity. 
Flag images are from https://flagpedia.net. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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monitor birds and other biodiversity (Horns et al., 2018). Unfortunately, 
citizen science datasets are also often inadequate in these countries 
(Neate-Clegg et al., 2020), as also seen in our results. The fact that birds 
are not “typical” vertebrates with regard to sampling at the country 
level, is also reflected by the poor fit between our eBird country scores 
and the Species Sampling Effectiveness Index values from Oliver et al. 
(2021). We also demonstrated that sampling effort, as an isolated effect, 
was an important contributor to the conformity to Benford's law through 
resampling the same dataset increasing sample sizes, which led to better 
Benford's law conformity. Our results using a sub-country dataset (using 
Bird Conservation Regions as units) showed similar patterns to country- 
level datasets. 

Testing four different biological groups in different spatial contexts 
(from subnational to global), we found similar results and identified 
variability among datasets. Among the non-avian datasets, we found the 
highest conformity to Benford's law in the plant dataset, which had the 
highest coverage, while the one with the lowest (spiders) had the highest 
MAD score. Testing Benford fit of simulated and biased datasets indi
cated better conformity to Benford's law for communities with log- 
normal abundance distribution. Data manipulation that did not 
change this distribution model were not detectable by the test (i.e., MAD 
scores did not increase). 

While the rarefaction showed good sampling coverage for most 
datasets, the test for Benford fit resulted in variable conformity. When 

Table 2 
Benford's law conformity decision parameters for simulated and biased community datasets. S: number of species, N: number of observations used, SAD: Species 
abundance distribution, μ ± σ2: Mantissa mean and variance values, L2: Mantissa arc test statistic and associated p-value (in parentheses), MAD: Mean Absolute 
Deviation, NC: non-conformity, MAC: marginally acceptable conformity, AC: acceptable conformity, CC: close conformity, f: distortion factor. CV: coefficient of 
variation, Ns: the sum of abundances of individuals in a sample.  

Dataset S N SAD μ ± σ2 L2 MAD F 

Simulated 1S1  2024  7,839,439 Log-normal 0.495 ± 0.082 0.0011 
(0.6079) 

0.0037 CC  − 1.9219 

Simulated 2  2073  7,839,439 Log-series 0.543 ± 0.087 0.0131 
(<0.0001) 

0.0243 NC  1.0060 

Simulated 3S3  2024  7,839,439 Poisson log-normal 0.518 ± 0.047 0.1499 
(<0.0001) 

0.0493 NC  − 4.8750 

Simulated 4S4  2024  7,839,439 MacArthur's broken stick 0.532 ± 0.083 0.0046 
(0.0001) 

0.0132 MAC  6.7930 

Biased 1B1  2024  6,685,408 Log-normal 0.508 ± 0.082 0.0001 
(0.8055) 

0.0049 CC  1.4810 

Biased 2B2  2024  8,997,605 Log-normal 0.4964 ± 0.0844 0.0002 
(0.7359) 

0.0041 CC  − 0.5524 

Biased 3B3  1974  9,013,735 Log-normal 0.5021 ± 0.0839 0.0001 
(0.9592) 

0.0046 CC  0.5860 

Biased 4B4  1975  6,704,273 Log-normal 0.5062 ± 0.0819 0.0002 
(0.665) 

0.0067 AC  1.0505 

Notes: 
S1: abundance CV = 5. 
S3: SAD coefficient properties: μ = 5, σ = 0.5. 
S4: SAD coefficient properties: Ns = 100,000. 
B1: top20: divided by 2; middle: randomly ±1–20 % error; bottom50: multiplied by 50. 
B2: top20: multiplied by 2; middle: randomly ±1–30 %; bottom50: multiplied by 10. 
B3: top20: multiplied by 2; middle: randomly ±1–30 %; bottom50: eliminated. 
B4: top20: divided by 2; middle: randomly ±1–30 %; bottom50: eliminated. 

Table 3 
Benford's law conformity decision and gambin model fit parameters for subsets of the three selected countries. CR: Costa Rica, B: Brazil, T: Thailand, no filter: all 
species observations used, >10: only species with >10 observations included, >100: only species with >100 observations included, S: number of species, μ ± σ2: 
Mantissa mean and variance values, MAD: Mean Absolute Deviation, NC: non-conformity, MAC: marginally acceptable conformity, AC: acceptable conformity, CC: 
close conformity. f: distortion factor, L2: Mantissa arc test statistic and associated p-value (in parentheses), AICc: Akaike's information criterion value corrected for 
small sample sizes, α: estimated parameter of the gambit model, χ2: Pearson's χ2 statistic and associated p-value (in parentheses), and df is degrees of freedom with 
relation to the gambin model fit.  

Dataset S μ ± σ2 MAD F L2 AICc α χ2 df 

CR 
No filter  

875 0.489 ± 0.088 0.0050 CC  − 0.7101 0.0014 
(0.2815)  

4719.997  13.297 1956.82 
(<0.0001)  

14 

CR > 10  822 0.497 ± 0.084 0.0050 CC  − 0.7101 0.0005 
(0.6438)  

3968.961  19.422 92.378 
(<0.0001)  

14 

CR > 100  730 0.490 ± 0.085 0.0057 CC  − 2.0620 0.0003 
(0.803)  

3230.907  28.501 92.021 
(<0.0001)  

14 

B 
No filter  

1702 0.493 ± 0.082 0.0058 CC  − 1.8731 0.0006 
(0.3646)  

8823.461  7.236 296.167 
(<0.0001)  

13 

B > 10  1538 0.496 ± 0.079 0.0071 AC  − 1.8731 0.0017 
(0.0760)  

7324.52  10.948 89.884 
(<0.0001)  

13 

B > 100  1130 0.465 ± 0.077 0.0135 MAC  − 8.5151 0.00824 
(0.0912)  

4950.417  19.759 332.001 
(<0.0001)  

13 

T 
No filter  

906 0.484 ± 0.089 0.0092 AC  − 3.1895 0.0016 
(0.2428)  

4679.501  6.175 196.348 
(<0.0001)  

12 

T > 10  782 0.486 ± 0.082 0.0098 AC  − 3.1894 0.00119 
(0.4301)  

3646.414  10.834 57.268 
(<0.0001)  

12 

T > 100  528 0.461 ± 0.083 0.0154 NC  − 7.8992 0.0062 
(0.0366)  

2228.761  22.36 167.218 
(<0.0001)  

12  
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Fig. 3. a) Yearly Mean Absolute Deviation values of cumulative eBird data from the USA in 2000–2019. b) Mean Absolute Deviation score as a function of country- 
level averaged completeness of surveys based on eBird data. Each point represents a country (n = 140, countries, where no MAD value was obtained were excluded). 
The blue line represents a linear model regression fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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comparing eBird datasets for the three selected countries, we found that 
Benford's fit was lowest for Thailand and highest for Costa Rica. How
ever, the rarefaction curves suggested that it would be unlikely to obtain 
more species with more individuals sampled for Thailand and Brazil, 
indicating that Benford's law is not ideal to check survey completeness 
and is somewhat sensitive to sample size, i.e., does not perform well for 
small datasets. Therefore, we confirm that Benford's conformity values 
are dependent on sample size, in our case, species richness matters for 
occurrence datasets, as suggested by Nigrini (2012) and others for non- 
biological datasets. While the Benford test is generally recommended for 
datasets with over 1000 records (to obtain numbers with at least four 
digits), in case of fewer digits, there is only a slightly larger bias in favour 
of the lower digits (Nigrini, 2012). Benford's law theorists warn that if 
smaller datasets are analysed, the deviation from the Benford pro
portions could be higher and the first digit test is generally recom
mended for small datasets, which are often the case for biological data. 

For instance, in our eBird dataset, only 11 countries had over 1000 
species and 39 countries had only 10–99 observations. 

Hill numbers and other methods can inform us about biodiversity, 
while accounting for coverage and relative abundance distribution (Hill, 
1995; Chao et al., 2014). On the other hand, Benford's law can provide 
additional information on data heterogeneity or the evenness of the 
sample. Like Hill numbers, Benford fit can also be somewhat sensitive to 
the number of individuals sampled, but unlike Hill numbers, it does not 
explicitly measure species richness, but rather indicates the reliability of 
a dataset for studying relative abundance or occupancy of the species 
within a community. Similarly, we found that gambin fit (Ugland et al., 
2007) improved with increasing coverage and the smallest adjustment 
(lowest AICc value) was seen in the only dataset categorised as non- 
conforming to Benford's law, i.e., the Thailand eBird dataset with no 
rare species. The fact that including rare and very rare species in the 
subsets increased conformity to Benford's law can be seen as a virtue of 

Fig. 4. Five Benford characteristics for three selected countries. In the columns from left to right: digit distribution for first order test, digit distribution for second 
order test, summation distribution by digits, Chi-square difference and Summation difference. The three selected countries are in the rows: Costa Rica (top), Brazil 
(middle) and Thailand (bottom). Flag images are from https://flagpedia.net. 

Fig. 5. Rank-abundance graphs for the three selected countries, Costa Rica (left), Brazil (central) and Thailand (right). Flag images are from https://flagpedia.net.  
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this method, as rare species often represent a problem for fitting SAD 
(Magurran and Henderson, 2003). The gambin fit proved to be the best 
model of the SAD of real communities and Benford conformity showed a 
similar pattern to its results, suggesting that testing Benford fit is similar 
to testing for a log-normal distribution with an adjustment for a long-tail 
caused by the presence of rare species. 

The results of Benford fit also diverged from traditional measures of 
completeness for the non-avian datasets. The highest conformity to 
Benford's law was achieved for plants, possibly as this dataset had the 
larger sample size and higher species representativeness than frogs or 
spiders. While the rarefaction curve for frogs reached an asymptote, this 
dataset did not fit the distribution predicted by Benford's law. These 
comparisons also suggest that testing for Benford conformity is not a 
suitable indicator of the completeness of a biodiversity survey, although 
we know that many frog species are absent from this dataset. 

Biodiversity datasets are often incomplete, especially those from 
tropical areas or consisting of hyperdiverse taxa, and in these cases, true 
species richness or species occurrences are underestimated (Colwell and 
Coddington, 1994). However, the completeness of a dataset does not 
necessarily indicate its usefulness, as there are many ecological and 
conservation questions that can be answered from datasets that are not 
necessarily complete (Wilson et al., 2005; Grantham et al., 2009). The 
question is to know when the dataset is reliable. While in general we 
suggest that high conformity is correlated with the representativeness of 
the sample based on species abundance heterogeneity, we did not 

Fig. 6. Benford characteristics for subsets of the Costa Rica eBird data. In the columns from left to right: digit distribution for first order test, digit distribution for 
second order test, summation distribution by digits, Chi-square difference and Summation difference. In the rows from top to bottom: 20–40–60–80 and 100 % of the 
data. Plots in the last row are the same as plots in the same row of Fig. 5. 

Table 4 
Parameters for the decision to evaluate the conformity to Benford's law for 20 %, 
40 %, 60 %, 80 % and 100 % subsets of eBird data from Costa Rica, Brazil and 
Thailand and GBIF datasets for spiders, frogs, and plants. N: number of obser
vations used, N2: number of observations used for second order, μ ± σ2: 
Mantissa mean and variance values, χ2: Pearson's χ2 statistic and associated p- 
value (in parentheses), L2: Mantissa arc test statistic and associated p-value (in 
parentheses), MAD: Mean Absolute Deviation, NC: non-conformity, MAC: 
marginally acceptable conformity, AC: acceptable conformity, CC: close 
conformity.  

Dataset N N2 μ ± σ2 χ2 L2 MAD 

20 % Costa Rica 
eBird  

605  499 0.443 ±
0.082 

30.597 
(0.0002) 

0.0103 
(0.0223) 

0.0334 
NC 

40 % Costa Rica 
eBird  

671  606 0.475 ±
0.079 

14.063 
(0.0801) 

0.0056 
(0.0231) 

0.0141 
MAC 

60 % Costa Rica 
eBird  

698  637 0.481 ±
0.080 

6.5671 
(0.584) 

0.0011 
(0.4738) 

0.0077 
AC 

80 % Costa Rica 
eBird  

713  663 0.501 ±
0.082 

4.8273 
(0.7759) 

0.0002 
(0.8877) 

0.0058 
CC 

100 % Costa 
Rica eBird  

875  755 0.489 ±
0.088 

3.1601 
(0.9239) 

0.0014 
(0.2815) 

0.0050 
CC 

Brazil eBird  1130  846 0.493 ±
0.082 

6.6414 
(0.5758) 

0.0006 
(0.3646) 

0.0058 
MAC 

Thailand eBird  906  531 0.484 ±
0.089 

0.001 
(0.2428) 

0.0016 
(0.2428) 

0.00922 
NC  
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explicitly test if a better fit to Benford's law actually means ‘better’ data, 
and we acknowledge that more data alone do not necessarily translate to 
effective biodiversity knowledge (Oliver et al., 2021). Even within a 
given country, the data will continue to have gaps and redundancies, 
potentially limiting our ability to understand biodiversity fully in that 
region. Nevertheless, our intent was to demonstrate the potential for 
using Benford's law in the age of big data in ecology and evolution. 
Hence, we suggest that Benford's law provides a complementary 
approach to identify reliable datasets for inferences on the relative 
abundances of species. We do not intend Benford conformity to replace 
traditional data quality checking approaches, but give more evidence to 
their usefulness. 

As analyses look to answer large ecological and conservation 
research questions, an important first question is identifying ‘good 
enough’ data. Often, regions with little to no data need to be discarded 
for practical reasons (Oliver et al., 2021), and the conformity to Ben
ford's law may provide a quick method to assess which regions have 
relatively good quality data as well as temporal progress towards 
increased data representativeness. Higher local participation in citizen 
science initiatives can help improve our ability to effectively monitor 
biodiversity in the future (Pocock et al., 2018). As these big datasets 
continue to increase, each country is increasingly responsible for 
monitoring its biodiversity, and metrics such as Benford's law may prove 
useful for countries to track their progress in closing biodiversity data 
gaps and species abundances representativeness. Therefore, we suggest 

that along with the more traditional methods checking the fit to Ben
ford's law can also be useful, particularly for large-scale occurrence data. 
In conclusion, Benford conformity test is a way to check data quality 
based on the heterogeneity of species abundance, because it fits well to 
log-normal distribution, especially when longer tails of rare species are 
included. We suggest its use as an initial screening process to access the 
quality of citizen-science data and other large-scale biodiversity datasets 
to indicate their potential reliability. 

Thresholds of acceptability or conformity to Benford's law vary 
depending on sample size (i.e., the number of species), the traits of these 
species (e.g., their rarity or detectability that will determine the number 
of observations) and also on the species abundance distribution. 
Although we present the results based on categorical responses (e.g., 
close and acceptable conformity), the use of the MAD score as a 
continuous measure may prove useful to track biodiversity data into the 
future, especially to account for the expected SAD. Future work should 
focus on (1) understanding the applicability of using Benford's law 
across different spatial scales for data collected using the same method; 
(2) repeating for different large-scale biodiversity datasets across 
different taxonomic groups, both structured and unstructured, collected 
using different methods; and (3) testing whether high conformity to 
Benford's law matches ‘better’ knowledge about biodiversity in a given 
region. 

In conclusion, our analyses highlight the potential of Benford's law to 
be used as a fast and efficient first-pass complementary method to 

Fig. 7. Benford fit (left column), rarefaction (central column) and species accumulation curves as a function of the number of individuals for three GBIF datasets and 
the Plants of the Parisian Basin (marginal Benford conformity – top row) and frogs of the Southern Hemisphere (non-conformity – central row) and spiders of the 
Southern Hemisphere (non-conformity – bottom row). PhyloPic under Creative Commons licenses CC0 1.0 and CC BY 3.0. 
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traditional ways to assess the ‘reliability’ of large-scale biodiversity 
datasets, including those collected by citizen scientists with regard to the 
distribution of abundance among species. 
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